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Abstract
In this work, we analyzed a 96-hour corpus of married cou-
ples spontaneously interacting about a problem in their re-
lationship. Each spouse was manually coded with relevant
session-level perceptual observations (e.g., level of blame to-
ward other spouse, global positive affect), and our goal was to
classify the spouses’ behavior using features derived from the
audio signal. Based on automatic segmentation, we extracted
prosodic/spectral features to capture global acoustic properties
for each spouse. We then trained gender-specific classifiers to
predict the behavior of each spouse for six codes. We compare
performance for the various factors (across codes, gender, clas-
sifier type, and feature type) and discuss future work for this
novel and challenging corpus.
Index Terms: behavioral signal processing, human behavior
analysis, couples therapy, prosody, emotion recognition

1. Introduction
Several fields in psychology depend critically on perceptual
judgments made by people. For example, diagnoses of social
disorders (e.g., autism) and many types of social therapies (e.g.,
couples therapy), require careful observation and assessment of
social, affective, and communicative behavior. While some of
these judgments can be made in real-time during the interaction,
oftentimes the interaction is recorded for offline hand coding of
relevant observational events, especially for training purposes.
In family studies research and practice, psychologists rely on a
variety of established coding standards [1].

This manual coding is a costly and time consuming process.
First, a detailed coding manual must be created, which often
requires several design iterations. Then, multiple coders, each
of whom has his/her own biases and limitations, must be trained
in a consistent manner. The process is mentally straining and
the resulting human agreement is often quite low [1] [2].

Technology has the potential to greatly help with coding
audio-visual data. Certain measurements are difficult or impos-
sible for humans to do, such as accurately tracking the pitch of
a speaker or quantifying a person’s movement. Computers are
much better-suited to extract these so-called low-level descrip-
tors (LLDs) of human behavior [3]. Human behavioral signal
processing involves using signal processing methods and ma-
chine learning algorithms to extract human-centered informa-
tion from audio-video signals, including social cues [2], affect
and emotions [4] [5] [6], and intent [7]. Rather than relying
on multiple humans to laboriously code audio-video data, the
idea here is to use LLDs and mid-level signal representations
to estimate perceptual judgments at possibly multiple granular-
ities. The advantage of using computers is that it could provide

a consistent way to automatically quantify aspects of human be-
havior. The technology could also potentially be adapted from
one domain to another.

In this paper, we analyze recordings of a husband and wife
discussing a problem they are having with their relationship.
The spontaneous sessions were manually labeled with a num-
ber of session-level perceptual codes (e.g., global negative af-
fect for each spouse). Affective states and intentions are often
portrayed vocally [8], and verbal cues have been found to be
relevant in the context of marital conflicts [9]. Our goal in this
paper is to learn the perceptual codes directly from the audio
signal to demonstrate the predictive power of objective signal-
based cues. Section 2 describes the corpus. Section 3 discusses
the acoustic features we extracted, and Section 4 displays the
classification results. Section 5 provides a discussion, and we
conclude in Section 6 with future work.

2. Corpus
The corpus we are using consists of audio-video recordings of
couples (wife and husband) during real problem-solving dyadic
interactions. The data was collected as part of a longitudinal
study at the University of California, Los Angeles and the Uni-
versity of Washington. 134 seriously and chronically distressed
married couples received couples therapy for one year. Partici-
pants in the study ranged from 22 to 72 years old, with a median
age for men of 43 years (SD = 8.8) and a median age for women
of 42 years (SD = 8.7). They were, on average, college-educated
(median level of education for both men and women was 17
years, SD = 3.2). The sample was largely Caucasian (77%),
with 8% African American, 5% Asian or Pacific Islander, 5%
Latino/Latina, 1% Native American, and 4% Other. Couples
were married an average of 10.0 years (SD = 7.7) [10].

As part of the study, the couples participated in sessions
where they discussed a problem in their relationship with no
therapist or research staff present. The couple talked for ten
minutes about the wife’s chosen topic and ten minutes about the
husband’s chosen topic; these sessions were considered sepa-
rate. Each couple’s problem-solving interactions were recorded
at three points in time: before the therapy sessions began, 26
weeks into therapy, and two years after the therapy sessions fin-
ished. In total, we have 96 hours of data across 574 sessions.

The audio-video data consist of a split-screen video
(704x480 pixels, 30 fps) and a single channel of far-field audio.
Since the data was originally only intended for manual coding,
the recording conditions were not ideal for automatic analysis;
the video angles, microphone placement, and background noise
varied across couples and across time periods. We also have ac-
cess to word transcriptions, in which the speaker was labeled as
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Figure 1: Block diagram of the automatic alignment proce-
dure [13]. Generic acoustic models (AM) and session-specific
language models (LM) are used to run ASR on the audio file.
Anchor regions are accepted if aligned portions between the
reference transcript (REF) and ASR transcript (HYP) meet 4
heuristics. The process is then iterated between anchor regions.

well (husband/wife). The transcripts lack detailed annotations
such as timing and speech overlap indications.

Both spouses were evaluated with 33 session-level codes
from two coding schemes. The Social Support Interaction Rat-
ing System (SSIRS) consists of 20 codes that measure the emo-
tional component of the interaction and the topic of conversa-
tion [11]. The 13 codes in the Couples Interaction Rating Sys-
tem 2 (CIRS2) were specifically designed for conversations in-
volving a problem in a relationship [12]. Both coding manuals
were designed to have evaluators watch the entire session and
provide session-level ratings of each spouse’s overall behavior
on an integer scale from 1 to 9; utterance- and turn-level ratings
were not obtained. Three to four student evaluators coded each
session, producing one set of 33 codes for each spouse. All
evaluators underwent a training period to give them a sense for
what was “typical” behavior and to help standardize the coding
process.

Due to low inter-evaluator agreement for some codes and
high correlation between some of the codes, we chose to an-
alyze six codes for this paper. Two of the codes were from
CIRS2: level of acceptance toward the other spouse (abbrevi-
ated “acc”) and level of blame (“bla”), and the other four codes
were from SSIRS: global positive affect (“pos”), global neg-
ative affect (“neg”), level of sadness (“sad”), and use of hu-
mor (“hum”). It should be noted that each code measures how
much that particular code occurred, not how much the opposite
of the code occurred. Therefore, it is possible for a spouse to
receive high scores for both global positive and negative affect
if they display both often enough. Table 1 shows the correlation
between the six codes and between the wife’s and husband’s
scores, and the inter-evaluator agreement for each code.

Using the transcripts, we created word and speaker-turn
alignments using a recursive automatic speech recognition
(ASR) technique based on [13]. Figure 1 shows a block dia-
gram. After the algorithm converged, each session was split into

Code
Code Correlation

Spouse Agreement
acc bla pos neg sad Correlation

acc 0.647 0.751
bla -0.80 0.470 0.788
pos 0.67 -0.54 0.667 0.740
neg -0.77 0.72 -0.69 0.690 0.798
sad -0.18 0.19 -0.18 0.36 0.315 0.722
hum 0.33 -0.20 0.47 -0.29 -0.15 0.787 0.755

Table 1: Pearson’s correlation between codes/spouse and inter-
evaluator agreement for the six codes we analyzed.
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Figure 2: Example of automatic alignment and processed pitch
signal. In this particular segment the middle portion (labeled
“Unknown”) was not aligned due to overlapped speech (the
husband was laughing while the wife was speaking).

speaker-homogeneous regions (wife speech, husband speech)
and unknown regions in which alignment was not achieved
(Figure 2). We were able to segment more than 60% of the ses-
sions’ words into speaker-homogeneous regions for 293 of the
574 sessions (which included 83 unique husband/wife pairs).
The other sessions were deemed too noisy to achieve good seg-
mentation using this automatic alignment technique and are ig-
nored for the remainder of this paper.

3. Feature Extraction
Prosodic cues (e.g., pitch, energy, timing) have been shown to
be relevant in psychology literature [8] [9], and prosodic and
spectrum-based audio features have been used extensively for
various human-centered learning tasks [3] [4] [5] [6] [7]. We
explore the use of several acoustic features in predicting high-
level perceptual judgments about the couples’ behavior.

We computed the speaking rate for each aligned word from
the automatic segmentation output (in units of words/s and let-
ters/s). We next separated speech from non-speech regions by
running a voice-activity detector (VAD), trained on a 30-second
sample from one held-out session [14]. We extracted two first-
order Markov chain features from the VAD output: the tran-
sition probabilities to and from speech and non-speech states.
We also extracted the lengths of each speech and non-speech
segment to use as a LLD for later feature extraction.

In addition to this VAD stream, we extracted the follow-
ing LLDs across each speech region every 10 ms using a 25 ms
Hamming window: pitch, root-mean-square energy, harmonics-
to-noise ratio (HNR), voice quality (computed as the zero-
crossing rate of the autocorrelation function), 13 MFCCs, 26
magnitude of Mel-frequency band (MFB) features, and magni-
tude of the spectral centroid and spectral flux. All LLDs except
pitch were extracted with openSMILE [15].

Pitch estimates were made with Praat [16] using an auto-
correlation method, with minimum and maximum pitch values
of 65 Hz and 500 Hz, respectively. The resulting pitch signal
was then passed through an algorithm that attempted to fix in-
stances of pitch halving/doubling across unvoiced regions by
detecting large jumps in the pitch difference vector and was
subsequently median filtered and linearly interpolated (with no
interpolation across speaker-change points and regions detected
as non-speech by the VAD). See Figure 2 for an example.

In addition to this processed pitch signal, we also computed
two normalized pitch streams by: 1) subtracting the mean pitch
of the speaker for that frame (wife, husband, or unknown), and
2) performing a similar normalization on a logarithmic scale
(Eq. 1). The mean pitch value was computed across the whole
session using the automatic segmentation results; unknown re-
gions were treated as coming from one unknown “speaker.”
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Figure 3: Normalized histograms of code scores for the wife
(top) and husband (bottom). Scores in blue are in the bottom 50
(20%), and scores in red are in the top 50 (20%).

F0norm1 = F0 − µF0 , F0norm2 =
log

“
F0
µF0

”
log(2)

(1)

Each session was split into three “domains”: wife (speaker-
homogeneous regions where the wife was the speaker), hus-
band (speaker-homogeneous regions where the husband was the
speaker), and independent (alignment-independent regions that
included the whole session). We produced the final set of fea-
tures by extracting 13 functionals across each domain for each
LLD: mean, standard deviation, skewness, kurtosis, range, min-
imum, minimum location (normalized by the session length),
maximum, maximum location (normalized), first quartile, me-
dian, third quartile, and interquartile range. These 2007 features
capture global acoustic properties of the spouses/interaction in
each session. Note that delta and delta-delta features for the
LLDs were not included in the final feature set, since they of-
fered no improvement in initial experiments.

4. Classification Results

We framed this as a binary classification task (as in [7]), rather
than predicting the codes in a continuous manner. We analyzed
only the sessions that had mean scores (averaging across eval-
uators) that fell in the top 50 and bottom 50 of the score range,
corresponding to approximately the top 20% and bottom 20%
(Figure 3). Thus, our goal was to separate the two extremes
automatically. We trained wife and husband models separately
(12 binary classifiers total), and the percentage of misclassified
sessions was the chosen error metric, with a voting baseline per-
formance of 50% error.

We compared two classifiers: 1) support vector machines
(SVM) with linear kernel, and 2) Fisher’s linear discriminant
analysis (LDA), where we chose the discriminant hyperplane to
lie exactly between the projection of the class means. We used
leave-one-couple-out cross-validation to separate train and test
sets; we did not use leave-one-session-out cross-validation since
some couples had more than one session in the top and/or bot-
tom 50. The SVM was trained using all features; Fisher’s LDA
used forward feature selection, where the best feature was it-
eratively selected if it improved average classification accuracy
over ten folds of the train set. To reduce the chance of poor fea-
ture selection, all features that were highly uncorrelated (mag-
nitude of Pearson correlation coefficient less than 0.3) with the
class labels at each cross-validation were disregarded.

Table 2 shows the classification error for each code/gender/
classifier combination. All errors equal to or less than 31% are
significantly lower than the voting baseline performance of 50%
with p < 0.05, using McNemar’s Test.

Classifier Spouse acc bla pos neg sad hum AVG

linear SVM Wife 31 33 23 26 34 47 32.3
(all 2007 features) Husband 27 32 33 24 53 25 32.4

Fisher’s LDA Wife 20 35 20 28 34 47 30.7
(forward selection) Husband 21 39 31 27 35 21 29.0

Table 2: Number (percentage) of sessions misclassified for each
code and spouse when using various classifiers.

5. Discussion
Fisher’s LDA performed better than the SVM classifier for four
of the codes and had a lower average classification error; the
LDA method most likely benefitted from the forward feature
selection. We got the best performance when classifying the
code, “acceptance of other spouse,” and the worst results when
trying to predict the wife’s “use of humor.” We were surprised
by the large disparity between the performance for “acceptance”
and “blame,” since they were highly anti-correlated codes; how-
ever, the coding manual for blame concentrated on lexical cues,
so the coders may have been more affected by what the spouses
said, not how they said it. As a result, just the acoustic features
may not be good at discriminating high blame from low blame.

An average of 3.4 features (SD=0.81) were selected at each
fold by the LDA classifier. When training the wife mod-
els, the domain break-down on selected features was: In-
dependent=56%, Wife=32%, Husband=12%. For the hus-
band models: Independent=41%, Husband=37%, Wife=22%.
The LLD break-down on selected features was: Pitch=30%,
MFCC=26%, MFB=26%, VAD=12%, Rate=4%, Other=2%.
Further analyzing the selected pitch features, 47% were F0norm1
features (Eq. 1), 36% were F0norm2 features (Eq. 1), and 17%
were from the unnormalized pitch signal.

To gain more insight into the predictive power of each do-
main/LLD, we ran a second set of experiments by re-training
Fisher’s LDA on features from a single domain/LLD. Tables 3
and 4 show these results. Looking at individual domains, we
see that performance decreased for the husband when only wife
domain features are used (and vice versa). This makes sense,
since each spouse was rated separately, and coders probably
based their ratings more on the regions in which the spouse be-
ing rated was talking. However, it is interesting to note that
the performance does not severely drop in these mismatched
conditions. This is in part due to the fact that there is positive
correlation between the spouses’ scores (Table 1). Another in-
teresting trend is the good performance when using alignment-
independent features only, even outperforming the wife predic-
tions when using only wife domain features. This is probably
due to the fact that the session is inherently interactive, and
the alignment-independent features capture that better than the
husband-only and wife-only domain features. Thus, context is
important and should be better modeled in the future.

Looking at individual LLDs, we see that no single LLD
has an average code performance better than the case when all
features were used, which is to be expected. However, for some
codes/genders, performance is better when trained on a single
LLD. This means that there is still plenty of room to improve
with our learning methods through better feature selection and
dimensionality reduction. The relative goodness of the pitch
features also implies that more emphasis needs to be placed on
feature normalization techniques, so that the features are more
generalizable from session-to-session and couple-to-couple.
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Domain N Spouse acc bla pos neg sad hum AVG

Wife 669
Wife 23 31 26 24 34 58 32.7
Husband 38 44 27 33 56 46 40.7

Husband 669
Wife 36 37 38 46 59 39 42.5
Husband 25 35 28 29 33 31 30.2

Independent 669
Wife 22 44 18 23 35 43 30.8
Husband 35 39 25 28 35 51 35.5

Table 3: Number (percentage) of sessions misclassified when
using features from a single domain (using Fisher’s LDA clas-
sifier with forward feature selection).

LLD N Spouse acc bla pos neg sad hum AVG

Pitch 117
Wife 36 37 38 46 59 39 42.5
Husband 25 35 28 29 33 31 30.2

VAD 96
Wife 35 42 40 39 32 66 42.3
Husband 42 40 42 27 33 50 39.0

Energy 39
Wife 32 40 36 34 64 49 42.5
Husband 34 25 37 28 51 33 34.7

Rate 78
Wife 37 35 56 47 44 38 42.8
Husband 30 53 31 32 43 43 38.7

HNR 39
Wife 29 44 37 37 38 46 38.5
Husband 36 30 32 29 57 61 40.8

Voice Quality 39
Wife 44 35 52 40 47 44 43.7
Husband 41 25 46 30 56 39 39.5

MFCC 507
Wife 40 36 27 37 43 48 38.5
Husband 29 33 38 29 48 43 36.7

MFB 1014
Wife 29 53 23 33 38 47 37.2
Husband 19 46 30 30 56 41 37.0

Spectral Centroid 39
Wife 42 39 46 64 58 56 50.8
Husband 46 46 50 33 62 43 46.7

Spectral Flux 39
Wife 34 43 28 46 41 47 39.8
Husband 41 40 44 26 50 32 38.8

Table 4: Number (percentage) of sessions misclassified when
using features from a single LLD (using Fisher’s LDA classifier
with forward feature selection).

6. Conclusion & Future Work
This work represents an initial analysis of a novel corpus con-
sisting of real couples interacting about problems in their re-
lationship. We showed that we could train binary classifiers
using only audio features that separated spouses’ behavior sig-
nificantly better than chance for four of the six codes we ex-
amined. This is a challenging learning problem due to the ab-
sence of utterance/turn-level behavioral codes and the inherent
complexity of the dyadic interaction. This type of research is
important, since there is a dearth of work in the psychology lit-
erature that focuses on objective signal-based cues for human
behavioral analysis.

In the continuation of this work, we will investigate fusion
of the audio features with lexical features, which are also show-
ing promising results. Future work will incorporate dynamic
modeling that captures within-utterance variations and cross-
turn transitions and explores the use of saliency detection. Ad-
ditionally, we would also like to incorporate expert information
into this learning framework, which could help in a number of
ways, such as informing a lower-dimensional and focused fea-
ture set. Lastly, we are currently collecting a new database of

dyadic interactions using a 10-HD camera, 15-microphone ac-
quisition with the aid of a motion capture system. This new
corpus will allow for multimodal analysis of dyadic interac-
tions [17].
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